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We review and extend the theory and methodology of a posteriori error estima-
tion and adaptivity for modeling error for certain classes of problems in linear and
nonlinear mechanics. The basic idea is that for a given collection of physical phe-
nomena a rich class of mathematical models can be identified, including models that
are sufficiently refined and validated that they satisfactorily capture the events of in-
terest. These fine models may be intractable, too complex to solve by existing means.
Coarser models are therefore used. Moreover, as is frequently the case in applica-
tions, there are specific quantities of interest that are sought which are functionals
of the solution of the fine model. In this paper, techniques for estimating modeling
errors in such quantities of interest are developed. Applications to solid and fluid
mechanics are presented. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In principle, there are two major sources of error in computer simulations of physical
events: approximation error, due to the inherent inaccuracies incurred in the discretization
of mathematical models of the events, and modeling error, due to the natural imperfections
in abstract models of actual physical phenomena. The estimation and control of the first
of these has been the subject of research for two decades; the estimation and control of
the second error source, modeling error, is a relatively new subject, studied in recent years
in connection with heterogeneous materials, large deformation of polymers, and inelastic
behavior of materials. A summary of the theory of a posteriori error estimates of finite
element approximations is given in recent monographs [2, 3]. Hierarchical modeling and
model error estimation and control are discussed in Refs. [10, 12, 13, 18].

Initially, model error estimation methods were confined to global estimates [14, 19];
recently, extensions of the theories related to approximation error have made possible the
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calculation of upper and lower bounds of error in linear functionals of the solutions, thereby
making it possible to estimate errors in quantities of interest to the analyst, such as point-
wise stresses and displacements and average stresses over interfaces between dissimilar
materials [4, 7, 8, 11, 15, 16]. These types of estimates and the adaptive control procedures
they make possible are referred to as “goal-oriented” methods. Extensions of certain types
of goal-oriented methods to estimation of approximation errors encountered in nonlinear
boundary-value problems have also been reported in recent literature (e.g., [5, 9, 17]). A
type of modeling error considered in recent literature has to do with dimensional reduction,
e.g., the use of two-dimensional models as approximations to three-dimensional models, as
in the theory of plates and shells embedded in three-dimensional elasticity. Error estima-
tion and adaptive modeling in this sense were discussed by several authors, e.g., Cho and
Oden [6]. In particular, Ainsworth [1] addressed the problem of global estimates of both
modeling error and discretization error for such problems.

In this paper, we develop a general theory of a posteriori estimates of modeling error for
models of phenomena in solid and fluid mechanics. The approach is based on the idea that a
highly sophisticated mathematical model of a collection of events of interest can be devel-
oped which may be validated by observation or experiment, and which may be intractable
or impractical to solve, but which can be used as a datum with respect to which coarser or
simplified models can be compared. We develop a general framework for comparing coarse
and fine models and, thus, produce a basis for computing modeling error. The theory is a
generalization of the theory for approximation error, developed in [5]. Applications of the
theory require different developments for each application. We demonstrate applications
of modeling error estimation on specific classes of problems, including the analyses of
heterogeneous materials, incompressible viscous fluids, and nonlinear viscoelastic solids.
The framework for a posteriori error estimates of approximation errors can be obtained as
special cases of the theory.

Following this brief introduction, we recall in Section 2 some well-known results about
differentiation and linearization of functionals. In Section 3, we present the general theory for
residual error estimation with respect to quantities of interests. We briefly discuss in Section 4
how to derive computable error estimators and note that it is problem dependent. Finally,
we apply the general theory to three problems, namely heterogeneous elastic materials in
Section 5, incompressible fluid flows in Section 6, and nonlinear viscoelasticity in Section 7.
This is followed by concluding remarks in Section 8.

2. PRELIMINARIES: DIFFERENTIATION AND LINEARIZATION OF FUNCTIONALS

A key tool in our analysis of nonlinear problems is linearization, by which we mean the
representation of nonlinear functions as Taylor or mean-value expansions in certain function
spaces in terms of abstract derivatives and well-defined remainders. Thus, we assume from
the outset that the functionals and forms of interest are differentiable up to a sufficiently high
order, generally two or three. To lay the groundwork for such analyses, we record for future
reference representative forms of such expansions in the setting of general functions spaces.

Let V denote a Banach space and B(·; ·) and Q(·) a differentiable semilinear and possibly
nonlinear differentiable functional, respectively, defined on V :

B : V × V → R,

Q : V → R.
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Following common practice, we use the convention that semilinear forms such as B(·; ·)
are linear in all arguments that follow the semicolon; thus B(u; v) is linear in v but possibly
nonlinear in u. By differentiability of B(·; ·), we mean that limits such as

B ′(u; p, v) = lim
�→0

�−1[B(u + �p; v) − B(u; v)],

B ′′(u; p, q, v) = lim
�→0

�−1[B ′(u + �q; p, v) − B ′(u; p, v)],

B ′′′(u; p, q, r, v) = lim
�→0

�−1[B ′′(u + �r ; p, q, v) − B ′′(u; p, q, v)], . . . ,

exist. Thus, for fixed u, B ′(u; ·, ·), B ′′(u; ·, ·, ·), for instance, are bilinear and trilinear forms
in the arguments following the semicolon. Analogously, if Q(·) is a differentiable functional
on V , we use the following notations for its Gâteaux derivatives:

Q′(u; p) = lim
�→0

�−1[Q(u + �p) − Q(u)],

Q′′(u; p, q) = lim
�→0

�−1[Q′(u + �q; p) − Q′(u; p)],

Q′′′(u; p, q, r ) = lim
�→0

�−1[Q′′(u + �r ; p, q) − Q′(u; p, q)], . . . .

It is known that Taylor expansions with integral remainders can be constructed for such
functionals and semilinear forms. Among such expansions, we list the following:

Q(u + v) − Q(u) = ∫ 1
0 Q′(u + sv; v) ds,

Q(u + v) − Q(u) = Q′(u; v) + ∫ 1
0 Q′′(u + sv; v, v)(1 − s) ds,

Q(u + v) − Q(u) = 1
2 Q′(u; v) + 1

2 Q′(u + v; v)

+ 1
2

∫ 1
0 Q′′′(u + sv; v, v, v)(s − 1)s ds.




(1)

We also have

B(u + v; w) − B(u; w) = ∫ 1
0 B ′(u + sv; v, w) ds,

B(u + v; w) − B(u; w) = B ′(u; v, w) + ∫ 1
0 B ′′(u + sv; v, v, w)(1 − s) ds.

}
(2)

Many alternative forms of such expansions can be derived.

3. A GENERAL FRAMEWORK FOR RESIDUAL ERROR ESTIMATION

In an important series of papers that inspired portions of the present work, Becker and
Rannacher developed the dual-weighted residual (DWR) method as a general approach for
deriving residual-based estimates of approximation error in finite element approximations
of a broad class of nonlinear problems (for a detailed summary and references to other
work, see [5]).

We present in this section a straightforward generalization of the DWR framework, valid
for deriving error estimates of modeling error that, formally, reduces to the original DWR
of [5] as a specific case. The details of application of this framework to obtain modeling
error estimates in specific cases are, of course, much different and, in some cases, more
involved than those for approximation error.
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We begin with the abstract nonlinear problem

Find u ∈ V such that
B(u; v) = F(v), ∀ v ∈ V ,

(3)

where, again, B(·; ·) is a semilinear form defined on the Banach space V and F(·) is a linear
functional on V . We assume that (3) admits a unique solution u in V .

Our goal is to determine specific features of the solution characterized by another func-
tional Q defined on V . Thus, for example, if (3) characterized a nonlinear boundary-value
problem in, say, finite elasticity or viscous flow, Q(u) represents a specific “quantity of inter-
est,” such as average stress on an interior interface or the average vorticity near an obstacle
in the flowfield. A theory for estimating approximation errors in such quantities of interest
for linear elliptic problems can be found in the work of Prudhomme and Oden [11, 16]. The
general framework for nonlinear problems was advanced by Becker and Rannacher [5].

In [5], an “optimal control” approach to this problem is proposed based on the following
constrained minimization problem:

Find u ∈ V such that

Q(u) = inf
v∈M

Q(v),

where

M = {v ∈ V ; B(v; q) = F(q), ∀ q ∈ V }.

(4)

The minima u correspond to a saddle point (u, p) ∈ V × V of the Lagrangian

L(u, p) = Q(u) + F(p) − B(u; p), (5)

with p the influence function (or Lagrange multiplier or adjoint variable) corresponding to
the choice Q of the quantity of interest. The critical points (u, p) of L(·, ·) are such that

L ′((u, p); (v, q)) = 0, ∀ (v, q) ∈ V × V . (6)

Since, for all (v, q) ∈ V × V ,

L ′((u, p); (v, q)) = Q′(u; v) − B ′(u; v, p) + F(q) − B(u; q), (7)

to solve (4), we seek (u, p) ∈ V × V such that

B(u; q) = F(q), ∀ q ∈ V,

B ′(u; v, p) = Q′(u; v), ∀ v ∈ V .
(8)

Equation (8)1 is the primal problem for u; (8)2 is the adjoint or dual problem for p and,
with u specified, is a linear variational equation for the influence function p corresponding
to the choice Q of the quantity of interest.

Now let us suppose that problem (3) is, for practical purposes, intractable and that we
are led to consider a related but possibly simplified problem using a different bilinear form
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B0(·; ·) (a different model of the physical event abstracted by model (3)) defined on a
subspace V0 ⊆ V . Instead of (4), we consider

Find u0 ∈ V0 such that

Q(u0) = inf
v∈M0

Q(v),

where

M0 = {v ∈ V0; B0(v; q) = F(q), ∀ q ∈ V0}.

(9)

Instead of (8), we now have

B0(u0; q) = F(q), ∀ q ∈ V0,

B ′
0(u0; v, p0) = Q′(u0; v), ∀ v ∈ V0.

(10)

If V0 = V , u0 may correspond to an approximation of u using a simplified model (e.g.,
using homogenized coefficients to approximate heterogeneous media). If V0 = V h , a finite
element subspace of V , then u0 = uh , the corresponding Galerkin-finite-element approxi-
mation of u. We are concerned with the former case and, hereafter, take V0 = V . We regard
(8) and (10) as different models of the same events, with (u, p) a “fine” solution to the
problem (corresponding to a model with finer detail) and (u0, p0) a “coarse” (or simplified)
solution to the problem.

Assuming that solutions (u, p) and (u0, p0) exist for (8) and (10), respectively, we define
the primal and adjoint errors (e0, ε0) as

e0 = u − u0 and ε0 = p − p0. (11)

Also, the degree to which (u0, p0) fails to satisfy the fine problem (8) is characterized by
the residual functionals:

R(u0; q) = F(q) − B(u0; q), q ∈ V,

R(u0, p0; v) = Q′(u0; v) − B ′(u0; v, p0), v ∈ V .
(12)

Our goal is to relate the modeling error in the quantity of interest, Q(u) − Q(u0), to the
residual functionals (12). This is accomplished in the following general result.

THEOREM 1. Given any approximation (u0, p0) of the solution (u, p) of system (8), we
have the a posteriori error representation

Q(u) − Q(u0) = R(u0; p0) + 1

2
(R(u0; ε0) + R(u0, p0; e0)) + r (e0, ε0), (13)

where

r (e0, ε0) = 1

2

∫ 1

0
{Q′′′(u0 + se0; e0, e0, e0) − 3B ′′(u0 + se0; e0, e0, ε0)

− B ′′′(u0 + se0; e0, e0, e0, p0 + sε0)}(s − 1)s ds. (14)
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Proof. For the Lagrangian defined in (5), and using the fact that (u, p) is a solution of
(8), we observe that

Q(u) = L(u, p) − (F(p) − B(u; p)) = L(u, p),

Q(u0) = L(u0, p0) − (F(p0) − B(u0; p0)) = L(u0, p0) − R(u0; p0).

Therefore,

Q(u) − Q(u0) = R(u0; p0) + L(u, p) − L(u0, p0). (15)

By virtue of the last expansion in (1), with Q as L , u as (u0, p0), and v as (e0, ε0), we have

L(u, p) − L(u0, p0) = 1

2
L ′((u0, p0); (e0, ε0)) + 1

2
L ′((u, p); (e0, ε0)) + 1

2

∫ 1

0
L ′′′((u0, p0)

+ s(e0, ε0); (e0, ε0), (e0, ε0), (e0, ε0))(s − 1)s ds.

Since (u, p) is a stationary point of L , it follows that L ′((u, p); (e0, ε0)) = 0. On the other
hand, using the expression of L ′ given in (7), we have, for any (v, q) ∈ V × V ,

L ′((u0, p0); (v, q)) = Q′(u0; v) − B ′(u0; v, p0)︸ ︷︷ ︸
R(u0,p0;v)

+ F(q) − B(u0; q)︸ ︷︷ ︸
R(u0;q)

.

It is not difficult, but tedious, to show that

L ′′′((u0, p0) + s(e0, ε0); (e0, ε0), (e0, ε0), (e0, ε0))

= Q′′′(u0 + se0; e0, e0, e0) − 3B ′′(u0 + se0; e0, e0, ε0)

− B ′′′(u0 + se0; e0, e0, e0, p0 + sε0).

Hence

L(u, p) − L(u0, p0) = 1

2
R(u0; ε0) + 1

2
R(u0, p0; e0) + r (e0, ε0),

where r (e0, ε0) is given by (14). Substituting this last equality into (15) gives the stated
result.

The residuals R(u0; ε0) and R(u0, p0; e0) can be related, as shown in the following
lemma.

LEMMA 1. Given any approximation (u0, p0) of the solution (u, p) of system (8), the
equality

R(u0, p0; e0) = R(u0; ε0) + �R (16)

holds where

�R =
∫ 1

0
B ′′(u0 + se0; e0, e0, p0 + sε0) ds −

∫ 1

0
Q′′(u0 + se0; e0, e0) ds. (17)
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Proof. Since u is the solution of (8)1, we can replace F(q) with B(u; q) in the definition
of the residual of the primal equation (12)1. Hence,

R(u0; q) = B(u; q) − B(u0; q), ∀ q ∈ V, (18)

and using one of the Taylor expansions, we get

R(u0; q) = B ′(u0; e0, q) +
∫ 1

0
B ′′(u0 + se0; e0, e0, q)(1 − s) ds. (19)

Likewise, the residual associated with the dual equation can be written as

R(u0, p0; v) = Q′(u0; v) − B ′(u0; v, p0)

= Q′(u0; v) − Q′(u; v) + Q′(u; v) − B ′(u0; v, p0)

= Q′(u0; v) − Q′(u; v) + B ′(u; v, p) − B ′(u0; v, p0)

= −[Q′(u; v) − Q′(u0; v)] + [B ′(u; v, p) − B ′(u0; v, p)] + B ′(u0; v, ε0).

Using the following Taylor expansions

Q′(u; v) − Q′(u0; v) =
∫ 1

0
Q′′(u0 + sε0; ε0, v) ds,

B ′(u; v, p) − B ′(u0; v, p) =
∫ 1

0
B ′′(u0 + se0; e0, v, p) ds,

we obtain

R(u0, p0; v) = B ′(u0; v, ε0) −
∫ 1

0
Q′′(u0 + sε0; ε0, v) ds

+
∫ 1

0
B ′′(u0 + se0; e0, v, p) ds. (20)

Taking q = ε0 in (19) and v = e0 in (20), we arrive at the relationship

R(u0, p0; e0) = R(u0; ε0) −
∫ 1

0
Q′′(u0 + sε0; ε0, e0) ds

+
∫ 1

0
B ′′(u0 + se0; e0, e0, p − (1 − s)ε0) ds,

and observing that p − (1 − s)ε0 = p0 + sε0 gives the stated result.
A companion simplified representation of the error is embodied in the following theorem.

THEOREM 2. With same notation as above,

Q(u) − Q(u0) = R(u0; p0) + R(u0; ε0) + 1

2
�R + r (e0, ε0). (21)

Proof. This immediately follows from Theorem 1 and Lemma 1.

By setting V0 = V h ⊂ V and B0(·; ·) = B(·; ·), R(u0; p0) = R(uh ; ph) = 0 and (13) re-
duces to Eq. (2.18) of [5]. Likewise, for these choices, (21) reduces to (2.22) of [5].
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Remark 1. Since the residual R(u0; ·) is a linear functional in the second argument,
result (21) can be rewritten as

Q(u) − Q(u0) = R(u0; p) + 1

2
�R + r (e0, ε0). (22)

In other words, it “suffices” to use the exact influence function p to obtain a very accurate
estimate of the error.

Remark 2. In the proof of Lemma 1, we unraveled the relationships between the errors
e0 and ε0 and the residualsR(u0; q) andR(u0, p0; v). Indeed, dropping the high-order terms
in (19) and (20), we obtain the governing equations for the modeling error e0 and for the
error ε0 in the influence function; i.e.,

B ′(u0; e0, q) = R(u0; q), ∀ q ∈ V, (23)

B ′(u0; v, ε0) = R(u0, p0; v), ∀ v ∈ V . (24)

The above equations are linear with respect to the errors. We note that their solutions are
approximations of e0 and ε0 rather than the exact errors themselves.

Remark 3. We note that (u0, p0) in Theorems 1 and 2 do not necessarily need to be
the solution of (10) in order for the Theorems to be satisfied. Indeed, (u0, p0) are simply
approximations of (u, p) and problem (10) was introduced as a possible means to obtain
(u0, p0).

4. ERROR ESTIMATORS FOR QUANTITIES OF INTEREST

Theorems 1 and 2 provide us with exact representations of the error in the quantity
of interest Q(u) − Q(u0). In this section, we discuss means to derive computable error
estimates. We first note that the term R(u0; p0) is readily computable assuming that the
functions u0 and p0 are explicitly known. On the other hand, the high-order terms r (e0, ε0)
and �R/2 may be neglected if the errors e0 and ε0 are known to be small. It therefore
follows that error estimates of Q(u) − Q(u0) can be introduced as

Q(u) − Q(u0) ≈ R(u0; p0) + 1

2
(R(u0; ε0) + R(u0, p0; e0)), (25)

Q(u) − Q(u0) ≈ R(u0; p0) + R(u0; ε0). (26)

Estimate (25) involves omitting remainders that are cubic in the errors e0, ε0, while (26)
omits second-order terms in the error. One might, therefore, expect (25) to yield more
accurate results than (26), but this may not be the case. These errors are in general not
known and need to be estimated. In doing so, we naturally introduce additional errors.
The first estimate is then not guaranteed to provide a more accurate result on estimates of
Q(u) − Q(u0).

Methods to obtain estimates of e0 and ε0 are usually problem dependent. We present in
the following sections three different applications for which we describe various approaches
to derive computable error estimators for the quantity of interest.
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5. HETEROGENEOUS ELASTIC MATERIALS

One of the most important applications of the modeling error estimates has to do with
the analysis of heterogeneous elastic materials. The subject was studied in some depth by
Oden and Vemaganti [13, 18].

5.1. Notation and Preliminaries

In the case of heterogeneous elastic materials, we have

V = {v ∈ (H 1(�))N : v |	D = 0}, (27)

B(u, v) =
∫

�

∇v : E∇u dx, (28)

B0(u0, v) =
∫

�

∇v : E0∇u0 dx, (29)

F(v) =
∫

�

f · v dx+
∫

	N

g · v ds, (30)

Q(v) = 1

|�|
∫

�

�11(v) ds. (31)

Here V is the space of admissible displacements of a linearly elastic body occupying a
domain � ⊂ R

d , d ≥ 1, with boundary ∂� = 	D ∪ 	N , displacements prescribed on 	D ,
and tractions prescribed on 	N , with meas 	D > 0, and with the body being subject to body
forces b and surface tractions g on 	N . For highly heterogenous materials, the elasticity
tensor E = E(x) ∈ (L∞(�))d2×d2

is a highly oscillatory function of position exhibiting
standard ellipticity and symmetry properties; e.g., ∃ �0,�1 > 0 such that for a.e. x ∈ �,

�0εi j εi j ≤ εi j Ei jkl(x)εkl ≤ �1εi j εi j ,

Ei jkl(x) = E jikl(x) = Ei jlk(x) = Ekli j (x),

a.e. x ∈ �, 1 ≤ i, j, k, l ≤ d, ∀ εi j = ε j i

(repeated indices summed over their range). The tensor E0 is an approximation of E obtained
through some homogenization process. Thus, the fine model problem is

Find u ∈ V such that

B(u, v) = F(v), ∀ v ∈ V ,
(32)

and the coarse model corresponds to the homogenized problem

Find u0 ∈ V such that

B0(u0, v) = F(v), ∀ v ∈ V .
(33)

It follows that e = u − u0 represents the modeling error due to using “homogenized” coef-
ficients in the equilibrium equations for linear elastostatics.
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The example of the quantity of interest Q is the average normal stress component �11(v) =
E11kl(x)∂vk(x)/∂xl over an (internal) surface � (such as an interface between dissimilar
materials).

5.2. General Modeling Error Estimates

Returning to (13), we observe that in this application,

R(u0; �0) = F(�0) − B(u0, �0)

= B(u, �0) − B(u0, �0)

= B(e0, �0), (34)

R(p0; e0) = Q(e0) − B(e0, p0)

= B(e0, p) − B(e0, p0)

= B(e0, �0), (35)

R(u0; p0) = B(e0, p0) = −
∫

�

∇ p0 : EI0∇u0 dx, (36)

r (e0, �0) = 0, (37)

where I0 = I − E−1 E0, e0 = u − u0, �0 = p − p0. Hence, the general estimate (13) re-
duces to

Q(u) − Q(u0) = R(u0; p0) + B(e0, �0). (38)

5.3. Error Estimates, Upper and Lower Bounds

In this example, B(·, ·) is a symmetric, positive definite, bilinear form (i.e., an inner prod-
uct) on the space of admissible functions of finite energy. Thus, we can use the parallelogram
identity

B(e0, �0) = B(se0, s−1�0) = 1

4
‖se0 + s−1�0‖2 − 1

4
‖se0 − s−1�0‖2, (39)

where s ∈ R is an arbitrary scaling factor and ‖ · ‖ denotes the energy norm,

‖v‖2 = ((v, v)) = B(v, v). (40)

But

B(se0 ± s−1�0, v) = sR(u0; v) ± s−1R(p0; v), ∀ v ∈ V, (41)

so that

‖se0 ± s−1�0‖ ≤ �±
upp, (42)

where �±
upp is the computable bound (assuming u0 and p0 are known):

�±
upp =

{∫
�

I0∇(su0 ± s−1 p0) : EI0∇(su0 ± s−1 p0) dx

}1/2

. (43)
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Likewise, a lower bound on se0 ± s−1�0 is obtained by noting that

‖se0 ± s−1�0‖ = sup
v∈V\{0}

|sR(u0; v) ± s−1R(p0; v)|
‖v‖

≥ |sR(u0; v0) ± s−1R(p0; v0)|
‖v0‖

for any v0 ∈ V\{0}. Selecting v0 = u0 + �± p0, where �± is chosen to provide an optimal
lower bound, we get

‖se0 ± s−1�0‖ ≥ �±
low, (44)

�±
low = |sR(u0; u0 + �± p0) ± s−1R(p0; u0 + �± p0)|

‖u0 + �± p0‖ , (45)

�± = ((u0, p0))R(u0; su0 ± s−1 p0) − ‖u0‖2R(p0; su0 ± s−1 p0)

((u0, p0))R(p0; su0 ± s−1 p0) − ‖p0‖2R(u0; su0 ± s−1 p0)
. (46)

Thus, introducing (39) into (38) and making use of inequalities (42) and (44), we have
the upper and lower bounds,

�low ≤ Q(u) − Q(u0) ≤ �upp, (47)

where

�low = R(u0; p0) + 1

4
(�+

low)2 − 1

4
(�−

upp)2, (48)

�upp = R(u0; p0) + 1

4
(�+

upp)2 − 1

4
(�−

low)2. (49)

For the parameter s, we take

s =
√

‖I0∇ p0‖
‖I0∇u0‖ ≈

√
‖�0‖
‖e0‖ . (50)

The bounds (47) were derived by Oden and Vemaganti in [13] and used in [18] to develop an
adaptive modeling strategy for controlling modeling error in heterogeneous elastic bodies
due to the use of averaged coefficients. Numerical experiments with a large number of
diverse examples in two and three dimensions suggest that these estimates are quite sharp,
typically yielding effectivity indices near 1.0 or 1.1 in cases in which the fine solution is
known with good precision (see [18]).

FIG. 1. Geometry and dimensions of the epoxy–glass specimen.
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FIG. 2. Schematic for the 2D problem of a manufactured specimen under compressive loads.

5.4. Numerical Example

For illustrative purposes, we recall here some numerical experiments which were pub-
lished in [18]. The study demonstrates the performance of adaptive material modeling and
deals with the deformation of a fabricated composite material that has a single layer of
glass beads distributed in an epoxy matrix. The geometry and dimensions of the specimen
are shown in Fig. 1. The glass beads have an average diameter of 800 �m, a modulus of
elasticity E = 4.6 GPa, and Poisson ratio � = 0.36. The parameters for the epoxy matrix
are E = 69 GPa and � = 0.22.

We suppose in these experiments that we are interested in the �11 component of the
stress tensor averaged over the inclusion denoted by � when the specimen is subjected to
compressive loads, as shown in Fig. 2. The solutions u0 and p0 are then computed using a
homogenized coarser problem. The adaptive modeling process suggested in Fig. 3 consists
of the following steps.

1. A highly accurate solution u0 of the coarse (homogenized) solution is obtained using
an adaptive finite element method.

2. An initial “domain of influence” is identified that includes the particular features of
interest (in this case, the average stress component �11 over an inclusion).

3. The homogenized (coarse) solution u0 is supplied as boundary conditions on the
domain of influence, and the problem is resolved with the full microstructure supplied
within this subdomain.

4. The error estimate is computed using (47) (or Q(e) ≈ 1
2 (�low + �upp)). If the error

tolerance is met, the process stops. If not, a larger domain is selected, with more microscale
information, and the process is updated until the error tolerance is met. This is the goal-
oriented adaptive algorithm described in [18].

FIG. 3. Results of the adaptive modeling procedure: domains of influence and resulting modeling errors.
By increasing the domain of influence, the modeling error is reduced from 17.0 to 9.05 and 2.1% (left to
right).
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6. INCOMPRESSIBLE FLUID FLOWS

In the second example, we consider the simulation of incompressible Newtonian fluid
flows at low Reynolds numbers. We assume that such flows can be accurately predicted
using the steady-state Navier–Stokes equations. A coarse model is provided by the linear
Stokes equations. Our main motivation in this example is to illustrate some aspects of the
theory rather than introduce a new approach to predict quantities of interest of the solutions
of the Navier–Stokes equations. These equations at low Reynolds numbers are generally
simple enough to be directly solved using the Newton–Raphson method.

6.1. Preliminaries

Let � denote an open bounded domain in R
d , d = 2 or 3 with boundary ∂�. The flow

of an incompressible Newtonian fluid is modeled by

−��u + ∇ p + (u · ∇)u = f , in �,

∇ · u = 0, in �,

u = 0, on ∂�,

where the velocity u and pressure p are, respectively, a vector and scalar field and f is a
body force per unit volume. Moreover, � represents the kinematic viscosity and the density
is assumed to be equal to unity. We emphasize here that p denotes the hydrostatic pressure
(and not the influence function introduced earlier). Thus, the fine model problem is

Find (u, p) ∈ V × Q such that

B((u, p), (v, q)) = F(v), ∀ (v, q) ∈ V × Q,
(51)

where

V = {v ∈ (H 1(�))d ; v = 0 on ∂�},

Q =
{

q ∈ L2(�);
∫

�

q dx = 0

}
,

B((u, p), (v, q)) = a(u, v) + b(u, q) + b(v, p) + c(u, u, v),

F(v) =
∫

�

f · v dx,

and

a(u, v) =
∫

�

�∇u : ∇v dx,

b(v, q) =
∫

�

q∇ · v dx,

c(u, v, w) =
∫

�

(u · ∇)v · w dx .
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The Stokes equations are derived from the Navier–Stokes equations by neglecting the
convective term; i.e., the solution (u0, p0) of the coarse model satisfies

−��u0 + ∇ p0 = f , in �,

∇ · u0 = 0, in �,

u0 = 0, on ∂�,

and the corresponding weak form of the problem is given by

Find (u0, p0) ∈ V × Q such that

B0((u0, p0), (v, q)) = F(v), ∀ (v, q) ∈ V × Q,
(52)

where the bilinear form B0(·, ·) reads

B0((u0, p0), (v, q)) = a(u0, v) + b(u0, q) + b(v, p0).

We denote by (eu
0, ep

0 ) the error in the solution (u0, p0) of the coarse model.
In the following, we suppose that we are interested in the kinetic energy of the flow in the

whole domain; that is, since the density is unity, the quantity of interest is half the square
of the L2 norm of the velocity:

Q(u, p) = 1

2

∫
�

u · u dx . (53)

Thus, Q(·) is a functional of the velocity only, and since it is nonlinear, we compute its
derivatives up to the third order; i.e.,

Q′((u0, p0);
(
eu

0, ep
0

)) =
∫

�

u0 · eu
0 dx,

Q′′((u0, p0);
(
eu

0, ep
0

)
,
(
eu

0, ep
0

)) =
∫

�

eu
0 · eu

0 dx,

Q′′′((u0, p0);
(
eu

0, ep
0

)
,
(
eu

0, ep
0

)
,
(
eu

0, ep
0

)) = 0,

and the derivatives of form B(·; ·) with respect to the first variable are

B ′((u0, p0);
(
eu

0, ep
0

)
, (v, q)

)
= a

(
eu

0, v
)+ b

(
v, ep

0

)+ b
(
eu

0, q
)+ c

(
u0, eu

0, v
)+ c

(
e0, uu

0, v
)
,

B ′′((u0, p0);
(
eu

0, ep
0

)
,
(
eu

0, ep
0

)
, (v, q)

) = 2c
(
eu

0, eu
0, v
)
,

B ′′′((u0, p0);
(
eu

0, ep
0

)
,
(
eu

0, ep
0

)
,
(
eu

0, ep
0

)
, (v, q)

) = 0.

We denote by (�, �) and (�0, �0) the influence functions with respect to the quantity of
interest Q associated with the fine and coarse model, respectively. These are the solutions
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of the adjoint problems:

Find (�, �) ∈ V × Q such that

B ′((u, p); (v, q), (�, �)) = Q′((u, p); (v, q)), ∀ (v, q) ∈ V × Q,
(54)

and

Find (�0, �0) ∈ V × Q such that

B0((v, q), (�0, �0)) = Q′((u0, p0); (v, q)), ∀ (v, q) ∈ V × Q.
(55)

In explicit form, these problems consist of finding (�, �) and (�0, �0) in V × Q such that
for all (v, q) ∈ V × Q,

a(v, �) + b(v, �) + b(�, q) + c(u, v, �) + c(v, u, �) =
∫

�

u · v dx,

a(v, �0) + b(v, �0) + b(�0, q) =
∫

�

u0 · v dx .

We note that since B0(·, ·) is a bilinear form, the left-hand side of the above equation does
not depend on u0. We are now in a position to derive estimates for the modeling error.

6.2. Estimates of Modeling Error

We denote by (eu
0, ep

0 ) and (��
0 , ��

0 ) the error in (u0, p0) and (�0, �0), respectively. From
the definition of the residual R((u0, p0); ·) of (12), we obtain

R
(
(u0, p0);

(
��

0 , ��
0

)) = F
(
��

0

)− B
(
(u0, p0);

(
��

0 , ε�
0

))
= B0

(
(u0, p0);

(
��

0 , ε�
0

))− B
(
(u0, p0);

(
��

0 , ε�
0

))
= −c

(
u0, u0, ��

0

)
, (56)

R((u0, p0); (�0, �0)) = F(�0) − B((u0, p0); (�0, �0))

= −c(u0, u0, �0). (57)

Meanwhile, the remainders are found to be

r
((

eu
0, ep

0

)
,
(
��

0 , ε�
0

)) = 1

2

∫ 1

0
−6c

(
eu

0, eu
0, ��

0

)
(s − 1)s ds = 1

2
c
(
eu

0, eu
0, ��

0

)
and

�R =
∫ 1

0
c
(
eu

0, eu
0, �0 + s��

0

)
ds −

∫
�

eu
0 · eu

0 dx .

It immediately follows that an estimate of the modeling error, in terms of the unknown error
��

0 , is given by

Q(u, p) − Q(u0, p0) ≈ −c(u0, u0, �0) − c
(
u0, u0, ��

0

)
. (58)
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The problem governing the error ��
0 in the influence function, following (24) of Remark 2,

reads

B ′((u0, p0); (v, q),
(
��

0 , ε�
0

)) = R((u0, p0); (v, q)), ∀ (v, q) ∈ V × Q,

that is,

a
(
v, ��

0

)+ b
(
v, ε�

0

)+ b
(
��

0 , q
)+ c

(
u0, v, ��

0

)+ c
(
v, u0, ��

0

) = R((u0, p0); (v, q)).

Replacing (v, q) with (��
0 , ε�

0 ) in the above equation and observing that ∇ · u0 = 0 and
∇ · ��

0 = 0, we obtain

a
(
��

0 , ��
0

)+ c
(
��

0 , u0, ��
0

) = R
(
(u0, p0);

(
��

0 , ε�
0

))
. (59)

Then, assuming that the term c(��
0 , u0, ��

0 ) is negligible with respect to a(��
0 , ��

0 ), we obtain∥∥��
0

∥∥ ≤ ‖R‖∗, (60)

where

∥∥��
0

∥∥ =
√

a
(
��

0 , ��
0

)
and ‖R‖∗ = sup

v∈V\{0}

|R((u0, p0); v)|
‖v‖ .

It follows that

−c
(
u0, u0, ��

0

) = R
(
(u0, p0);

(
��

0 , ε�
0

)) ≤ ‖R‖∗
∥∥��

0

∥∥ ≤ ‖R‖∗‖R‖∗ (61)

and thus

−‖R‖∗‖R‖∗ ≤ −c
(
u0, u0, ��

0

) ≤ ‖R‖∗‖R‖∗. (62)

Finally, the error Q(u, p) − Q(u0, p0) is bounded above and below,

�low ≤ Q(u) − Q(u0) ≤ �upp, (63)

where

�low = −c(u0, u0, �0) − ‖R‖∗‖R‖∗, (64)

�upp = −c(u0, u0, �0) + ‖R‖∗‖R‖∗, (65)

in which the norms of the residuals can be replaced by computable estimates (see, e.g., [2]).

7. NONLINEAR VISCOELASTICITY

7.1. Notation and Preliminaries

The finite deformation of a nonlinear viscoelastic body under the action of time-dependent
loads is characterized by the variational problem

Find u ∈ V such that

B(u, v) = F(v), ∀ v ∈ V ,
(66)
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where, now,

V = H m(0, T ; W),

B(u, v) =
∫ T

0

∫
�0

∇v(t) : P(∇ut (s)) FT (u(t)) dXdt

+
∫ T

0

∫
�0

	0v̈(t) · u(t) dXdt +
∫

�0

	0 (v(T ) · u̇(T ) − v̇(T ) · u(T )) dX︸ ︷︷ ︸
Inertial Terms

, (67)

F(v) =
∫ T

0

(∫
�0

	0 f 0(t) · v(t) dX +
∫

	0
N

g(t) · v(t) dS

)
dt

+
∫

�0

	0(v(0) · V0 − v̇(0) · U 0) dX︸ ︷︷ ︸
Inertial Terms

. (68)

Here the displacement field u = u(X, t) of a particle with material coordinates X at time t
is sought in the Banach space V of functions with time derivatives in H m(0, T ), m ≥ 2, and
values u(·, t) in a space of functions W defined over the reference configuration characterized
by the closure of an open bounded domain �0 ⊂ R

d , d = 1, 2, or 3; e.g., W = (W 1,p(�0))d ,
p ≥ 2 (the norm on V is, in general, ‖u‖V = {∫ T

0 ‖u(t)‖2
W dt}1/2).

In (67), P(·) is the constitutive functional for the second Piola–Kirchhoff stress tensor,

∇ut (s) = the history of the displacement gradient at time t
= {∇u(·, t − s); u(·, t − s) ∈ W; t ≥ s ≥ 0},

where ∇ is the gradient with respect to the material coordinates and F(u(t)) is the defor-
mation gradient,

F(u(t)) = I + ∇u(t), (69)

with I being the identity tensor and with FT the transpose of F.
We denote, for simplicity, v(t) = v(X, t), test functions in V at particle X at time t ;

	0 = 	0(X) is the mass density referred to the (initial) reference configuration, f 0(t) is the
body force density, and g(t) is the surface traction at time t referred to a portion 	0

N of
the boundary ∂�0 at time t . In (68), V0 = V0(X) and U 0 = U 0(X) are the initial velocity
and displacement fields, respectively, experienced by the body at time t = 0. We use the
notation v̇(t) = ∂v(t)/∂t . We assume that the data are such that problem (66) is meaningful
and well posed in V with a unique (fine) solution u.

As an example of a quantity of interest in applications of the model (66), consider a
material surface � that occupies a place �0 in the reference configuration with orientation
defined by a unit normal n0. The motion � = u + X carries �0 into �(t) = � (�0) and �0

into a surface �(t) with normal n in the current configuration of the body. The net normal
force acting on the deformed area is

∫
�(t) n · nT dS, where T is the Cauchy stress tensor. A

measure of the nominal force per unit undeformed area normal to �(t) is then

Q(u) = 1

|�0|
∫ T

0

∫
�0

m(u(t)) · n0 P(∇ut (s))FT (u(t)) dS0 dt, (70)

where m is the unit vector, m = F−T n0/‖F−T n0‖.
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To simplify the presentation, we shall confine ourselves to the quasi–static case, so that the
inertial terms, indicated in (67) and (68), are dropped. In addition, and only for simplicity in
presentation, we assume that the body is stress free at t = 0 and the history ∇ut (s) evolves
from null gradients, ∇u(0) = 0 at t = 0. A coarse model of the phenomena of interest is
then characterized by a semilinear form B0(u0, v) obtained by replacing P(·) in (67) with
a simplified constitutive functional, P0(·) of the histories ∇ut

0(s).
A straightforward calculation reveals that

B ′(u; v, w) =
∫ T

0

∫
�0

∇w(t) : P(∇ut (s))∇v(t)T dXdt

+
∫ T

0

∫
�0

∇w(t) : ∂P(∇ut (s); ∇v t (s))FT (u(t)) dX dt, (71)

where

∂P(∇ut (s); ∇v t (s)) = lim
�→0

�−1[P(∇ut (s) + �∇v t (s)) − P(∇ut (s))]. (72)

Likewise, for the functional in (70),

Q′(u; v) = 1

|�0|
∫ T

0

∫
�0

∂m(u(t))

∂u
· v(t) · n0 P(∇ut (s)) FT (u(t)) + m(u(t))

· n0∂P(∇ut (s); ∇v(t)T )FT (u(t)) + m(u(t)) · n0 P(∇ut (s))∇v(t)T dS0 dt . (73)

7.2. Modeling Error Analysis

In the present example, we note that

R(u0; v) = −
∫ T

0

∫
�0

∇v(t) : �P
(∇ut

0(s)
)

FT (u0(t)) dX dt, (74)

where �P is the stress error

�P
(∇ut

0(s)
) = P

(∇ut
0(s)
)− P0

(∇ut
0(s)
)

(75)

and (u0, p0) are solutions of the equations (10), with B0(·; ·), B ′
0(·; ·, ·), and Q′(·; ·) defined

now by (67), (71), and (73) with the inertia terms dropped and P(·) replaced by P0(·). We
have

R(u0, p0; v) = B ′
0(u0; v, p0) − B ′(u0; v, p0)

= −
∫ T

0

∫
�0

∇ p0 : �P
(∇ut

0(s)
)∇v(t)T dX dt

−
∫ T

0

∫
�0

∇ p0 : �∂P
(∇ut

0(s); ∇v t (s)
)

FT (u0(t)) dX dt, (76)

where

�∂P
(∇ut

0(s); ∇v t (s)
) = ∂P

(∇ut
0(s); ∇v t (s)

)− ∂P0
(∇ut

0(s); ∇v t (s)
)
. (77)
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Since B ′(u0; v, �0) = R(u0, p0; v), for all v ∈ V , we have∫ T

0

∫
�0

∇�0(t) : P
(∇ut

0(s)
)∇v(t)T dX dt

+
∫ T

0

∫
�0

∇�0(t) : ∂P
(∇ut

0(s); ∇v t (s)
)

FT (u0(t)) dX dt = R(u0, p0; v), (78)

with R(u0, p0; v) as given in (76).
Equation (78) is a linear integrodifferential equation for the error �0 in the influence

function p0. We shall assume that it is solvable using standard finite element methods, so
that a good approximate solution �h

0 can be obtained. There we write

�h
0(t) = �h

(∇ut
0(s)
) ≈ �0(t). (79)

With this result, we use (74) in (21), neglecting �R and r (e0, �0), to obtain the estimate

Q(u) − Q(u0) ≈ −
∫ T

0

∫
�0

∇ p0(t) : �P
(∇ut

0(s)
)

FT (u0(t)) dX dt

−
∫ T

0

∫
�0

∇�h
(∇ut

0(s)
)

: �P
(∇ut

0(s)
)

FT (u0(t)) dX dt . (80)

Numerical examples for control of the modeling error in global norm were shown in [12].
We hope to implement this theory in concrete applications in forthcoming work.

8. CONCLUDING COMMENTS

We have developed a general framework for the estimation of errors due to replacing a
fine and possibly intractable model of physical phenomena with a coarse model that can
yield solutions by available computational methods, and we have provided several examples
of applications to relevant problems in solid and fluid mechanics. These methods provide
estimates in errors in quantities of interest, characterized by functionals Q defined on the
spaces on which the fine and coarse models are set. Thus, our methods are constructed to
estimate the error

E = Q(u) − Q(u0),

assuming that u0 is known exactly.
Of course, in applications, only an approximation uh

0 of u0 is known, so we actually
should seek estimates of the error

Eh = Q(u) − Q
(
uh

0

)
.

But

Q(u) − Q
(
uh

0

) = Q(u) − Q(u0)︸ ︷︷ ︸
modeling error

+ Q(u0) − Q
(
uh

0

)︸ ︷︷ ︸
approximation error

.

The determination of modeling error is a goal of validation; that of approximation error is
a goal of verification. Techniques for estimating approximation error have been developed,
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for instance in [5, 11, 16, 17]; a combination of the methods of modeling error estimation
developed herein and the techniques in [5, 11, 16, 17] should have an impact on broad issues
of verification and validation for many classes of problems in mechanics.
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